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SUMMARY 
An adaptive strategy for the finite element solution of three-dimensional viscous flow problems is defined and 
implemented. The solution strategy is based on an advancing front mesh generator making use of binary data 
structures for fast geometrical data handling. The error is estimateld a posteriori with a residual-type bound. 
The error estimate is shown to exhibit proper convergence for tetrahedral elements. Its combination with the 
mesh generator and an interpolation scheme for unstructured meshes is shown to generate adaptive meshes 
and to reduce the solution cost for a given error level, as illustrated by the isothermal flow of a shear-thinning 
fluid. 
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1. INTRODUCTION 

Computational fluid dynamics is gaining acceptance as a valuable tool for engineers in a wide 
range of fields. In aerodynamics, the field which has successfully pioneered such numerical 
methods, the complexity of mathematical models has grown with the increase in computer speed 
and memory size’ and now allows the 3D modelling of the flow past an entire aircraft. As the 
discipline matures, additional topics besides the eternal quest to minimize computational time 
have come to the forefront of development:* the estimation of the solution accuracy and the 
reduction of the engineer’s involvement in the drudgery of the meshing process. 

The development in the field of material forming-to which the results contained in this paper 
are applied-has been similar, engineers relying nowadays on computer simulation during design. 
The emphasis is now put on the areas identified above: reduction of computational cost, 
knowledge of solution accuracy and better use of the engineer’s time by integration of the finite 
element code with a solid modeller. 

In order to answer these requirements globally, adaptive techniques were developed for 2D 
elasticity problems. In these methods a solution is computed on a user-defined mesh; the error is 
then estimated from that solution3 and the mesh refined accordingly in areas of high error. This 
leads to a minimum number of degrees of freedom for a chosen accuracy and reduces the 
engineer’s work load if the refinement is done automatically. These methods are implemented in 
available codes using structured meshes (PLTMG? FEARS’), but no 3D extension has been 
published. 
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More recently, an adaptive method based on triangular unstructured grids has been developed 
for a 2D aerodynamics problem, the solution of Euler’s equation.6 It has been applied since to 
linear elasticity problems’ as well as to forming processes.8 Moreover, its use has been extended to 
3D Euler comp~tations,~ showing the potential of unstructured grids for complex geometries. 

The objective of the present paper is to show how a 3D unstructured mesh generator combined 
with a rigorous a posteriori error estimate1°-12 allows the creation of an adaptive solution scheme 
for the diffusion-dominated Navier-Stokes equations. This adaptive scheme is an answer to the 
challenges stated above. Section 2 of the paper details the features of the mesh generator. The 
relationship between an object and its discretization is dealt with13 as well as other issues having a 
strong bearing on the quality of the final mesh.I4* l5 Section 3 details the equations to be solved 
and their finite element approximation and solution.169 l7 This is followed by a study of the error 
estimate and the adaptive cycle itself (Section 4). Finally, in Section 5, the solution process is 
applied to a classical polymeric fluid flow problem, the low-Reynolds-number flow of a non- 
Newtonian fluid in a contraction. 

2. MESHING ALGORITHM 

2.1. Advancing front mesh generator 

Unstructured mesh generators have proved very versatile and simple to implement in 2D and 
their use has grown rapidly in commercial software. Their success is based on the simplicia1 rule, 
i.e. that triangles can mesh any polygon and that tetrahedra can mesh any polyhedron. The 
general principles of the advancing front method of unstructured mesh generation, pioneered by 
Lo,18 are briefly described with the help of Figure 1. The boundary of the domain is first 

(a) (b) 

Figure 1. Advancing front mesh generation in 2 D  (a) discretization of the edges, creation of a point and a triangle; (b) in a 
partly meshed domain, interpolation of the mesh size information necessary to build the next element from a background 

mesh before creation of a new point 
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discretized and the points and elements are then created simultaneously (Figure l(a)), thus 
bypassing the point generation step required in other meshing techniques such as Delaunay 
triangulation.' For graded meshes the mesh size information is recovered by interpolation 
(Figure l(b)) from a background mesh of the same object. The efficient implementation of these 
concepts requires that proper data structures be used for the geometrical searches encountered 
during meshing. The emphasis in this section is on additional topics of special interest for 3D 
implementation; basic results are not reviewed.20 

2.2. Internal representation of 3 0  objects 

The interaction between the computational domain-called the object here-and the user is 
done with a two-dimensional representation of the object, either a sheet of paper or a CRT. This is 
natural for a plane computational domain, for which it is simple to devise an unambiguous 
representation. For three-dimensional domains, however, the integrity of the visual representation 
is harder to achieve. This increase in complexity is also true for the internal representation of the 
object, from which the mesh is built, and its careful design requires more thought than 
in 2D. 

Early developments in computer-aided design led to the wireframe representation of 3D objects, 
then to the parametric representation of free-form surfaces (e.g. Reference 21). These surface 
patches are still widely used for the description of objects in commercial databases, usually 
integrated in what is called a boundary representation, or B-rep, of the object (Figure 2). The 3D 
region to be meshed is bound by an assembly of faces called a shell. Each face, a plane or curved 
surface, is bound by a loop. Each loop is itself the assembly of edges connecting at vertices. The 
B-rep can lead to inaccuracy or incon~istency'~ when used as the sole description of an object, 
since no track is kept of the topological origin of each feature. 

REGION 

SHELL 

I 
FACE 

I 
LOOP 

EDGE 

VERTEX 

Figure 2. Boundary representation (B-rep) terminology 
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An object can also be represented by the union or intersection of elementary volumes, e.g. boxes, 
cylinders and cones, and such a framework is called constructive solid geometry or CSG. 
A purely CSG description of an object, such as the one used in octree-based mesh generators, does 
not allow for easy meshing of the boundaries.22 

Recognizing the fact that both types of representations are truly complementary, an interna- 
tional effort is under way to incorporate both CSG and B-rep in a hierarchical database built 
around an object-oriented language called STEP, allowing the unique definition of any solid and 
all its features.” The database written for the present work is also hybrid in nature. It allows 
handling of cylinders, cones and cubes. The boundary representation of these primitives is stored 
along with their implicit polynomial representation. The intersection of surfaces can then be 
computed using this second representation rather than the first one, and the transformation to 
develop a surface into a plane is easily computed. 

2.3. Shell discretization 

Before the 2D discretization of a plane domain, its edges have to be discretized. Similarly, in 3D 
the initial step is the discretization or triangulation of the shell. Each face is first mapped onto a 
plane using an invertible area-preserving transformation. This transformation is straightfor- 
ward23 for plane or ruled surfaces provided the surface is recognized as such using the CSG 
representation of the solid. A large proportion of surfaces encountered in polymer forming are of 
these types. In the case of free-form surfaces, for which no exact area-preserving transformation 
exists, a transformation similar to that of Reference 24 can be used it maps the unit parametric 
square into a distorted parametric quadrilateral in order to approximatively conserve angles. In 
this latter case the transformation has to remain invertible, therefore linear, and it may distort the 
mesh, hence the necessity of using the CSG representation when possible. Each plane equivalent of 
a face is then meshed using the 2D mesh generator described in Reference 20. In addition, for the 
consistency of the final shell mesh, each edge is only discretized when encountered for the first 
time. The computed points are then duplicated to mesh adjacent faces. The meshed shell forms the 
initial advancing front for the 3D mesh generation. 

2.4. Volume discretization 

The discretization of the region or volume itself starts by the storage of the initial advancing 
front in a binary tree structure.’O The triangle from which to build the first tetrahedron is then 
extracted from the root of the structure. Following the 2D procedure, the apex of the tetrahedron 
is determined by locating the centroid of the base triangle in the background 3D mesh, which 
spans the object to be meshed, and then interpolating h from the background mesh vertices. For 
convex objects, however, this may cause problems: if the new mesh is finer than the background 
mesh, new centroids on a face are not located inside the polyhedron defined by the background 
mesh. It is then necessary to perturb iteratively the co-ordinates of the point until they are inside 
the previous mesh to interpolate the mesh size from it. 

The new tetrahedral finite element is built using the computed apex or an existing point if one is 
found close enough, a notion which will be explained later. In order to obtain a valid mesh, the 
generation of this new element should not create any intersection with existing geometrical 
features in its neighbourhood. Namely, the edges of the element should not intersect existing faces 
of the advancing front and vice versa. The proper programming of this intersection check is the 
key to the success of the advancing front generator. The two key points for doing so are detailed 
below. 
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3 

1 

Figure 3. Topological identification allows the distinction between edges 1-3 and 2 4  while geometrical identification 
using the co-ordinates of the middle point does not 

First of all, it is essential to deal with the inaccuracy introduced by finite precision floating point 
arithmetic, since it may lead to multiple answers to a given test. To this end, topology is used 
rather than geometry whenever possible: checks are performed on node numbers rather than 
co-ordinates, even if it involves a larger number of checks. The advantage of this approach is 
illustrated by the simple example of the diagonal of a quadrilateral (Figure 3). A geometrical check 
identifying each edge by the co-ordinates of its midpoint will conclude on the equivalence between 
the two edges; a topological check identifying each edge by its end vertices will yield the correct 
answer. 

When geometrical checks cannot be avoided, a perturbation approach is used,14 the test on the 
distance d < 0 being replaced by d -= E, E being a user-defined tolerance. Furthermore, for the mesh 
generator to yield consistent results regardless of the overall size of the object, E is multiplied by the 
local mesh size for checks on distances and by the square of the mesh size for area checks. The 
perturbation E is therefore a true percentage perturbation. The perturbation method may prohibit 
the construction of certain tetrahedra and thus invalidate the simplicia1 rule. If this leads the 
algorithm to come to a halt, it is necessary to temporarily set E to zero to create a new element. This 
implicit use of machine zero tolerance may lead to a degeneracy that has to be dealt with later, and 
the number of this element is stored for this purpose. It should be noted that such occurrences have 
been encountered very rarely. 

The second key point regarding the programming of the intersection check is the reduction of its 
cost. The most frequent computation is that of the distance between a point and a plane face. This 
requires computation of the unit normal vector to the face. The exact computation of the unit 
normal involves costly arithmetic, and it should be stored instead as long as the face remains in the 
front. For uniform meshes, both storage and computation of the length of the normal can be 
avoided by replacing its exact length by a constant, since all elements are similar. 

While this intersection check is the major bottleneck for the meshing of small domains, a study 
of the distribution of total meshing time reveals that the recovery of the neighbourhood of the 
potential apex from the structure takes over for large domains (Figure 4). The neighbour search 
time plotted includes the cost of updating the tree structure. This can be explained by the following 
argument. The intersection checks are only performed on the faces located in the small 
neighbourhood recovered from the tree. While the cost of this search within the tree structure 
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Figure 4. Percentage of total meshing time spent in the intersection and search functions, measured on a scalar computer 

D 

0 2500 5000 7 5 0 0  
NUMBER OF ELEMENTS 

Figme 5. CPU time to build a 3D mesh of tetrahedral elements, measured on a Convex 220 

inevitably increases with the problem size, the size and complexity of that neighbourhood remain 
constant and so does the number of intersection checks. The sum of both search and intersection 
check times is always above 80% of the total meshing time, clearly identifying these two areas as 
critical. The overall performance of the resulting mesh generator is linear at approximately 500 
elements per minute on a Convex C220 (Figure 5). 

2.5. Mesh validity 

In order for the finite element problem to be well posed, the discretization of the computational 
domain must be valid. For a discretization Th of a region W with t elements K i ,  this means’’ 

v Ki E Th, VO~Ume ( K J  # 0, 
K i n K j = a y  V i y j ,  i # j ,  

V a K ,  face of K i ,  ( 3 j # i / a K i = a K j )  or ( d K , e R ,  boundary of a). 
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The first two conditions are dealt with by using the pertubation approach, the verification of the 
second one being the task of the intersection procedure described above. The third condition is 
dealt with globally by checking Euler’s formulae, given in Reference 23. The count of vertices u, 
edges e and facesfcan be incremented as meshing progresses, and the final count with t tetrahedra 
should give u +f- e = t + 1. In addition, if the subscript ‘b’ is used for boundary items, the relations 
20, -fb = 4 and vb =f- 2t + 2 should be verified. 

In practice, the condition of non-zero volume is not stringent enough to ensure an accurate 
solution. It is well known that the error bound on the solution of finite element problems depends 
on the shape of the elements. For the Stokes problem and linear elements the a priori error bound 
is O(h) for perfectly regular tetrahedra, but increases to h2/p  for ill-shaped elements, where p is the 
diameter of the ball inscribed in the element.’ When a neighbourhood point rather than the ideal 
one is chosen as the apex of a new element, as mentioned in the previous subsection, the regularity 
CT = h/p of the created element is of concern. The computation of the regularity is costly and it is 
approximated by a, called the aspect ratio (see Appendix). The histogram of the aspect ratio before 
Laplace smoothing for several meshes is plotted in Figure 6. 

If the aspect ratio of an element is above 2.0, a variation of Laplace smoothing” is performed on 
the vertices of that element after completion of meshing. Conventional Laplace smoothing of a 
point M of a mesh is the replacement of M by G, the centroid of the nodes linked to M by an edge. 
This is known to sometimes destroy the validity of the mesh and was modified as follows. Prior to 
smoothing a point M, of co-ordinate vector OM, the aspect ratios of the surrounding elements are 
computed. M is then replaced by the point on the line MG that approximately minimizes the 
maximum aspect ratio of all surrounding elements. This point has OM +A MG for co-ordinate 
vector, where L belongs to [O, 13 and is a multiple of 0-1. This Laplace smoothing is typically 
performed on 5% of the elements and its cost is small compared to the total meshing time. Meshes 
smoothed in this way show every little spread of aspect ratio and are therefore well suited for the 
generation of finite elements over the flow domain. These finite elements and the corresponding 
solution are detailed in the next section. 
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Figure 6. Distribution of the aspect ratios in 3D meshes of a cube before Laplace smoothing 
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3. EQUATIONS AND FINITE ELEMENT APPROXIMATION 

3.1. Newtonian $ui& 

The steady state motion of a viscous incompressible flow in a domain R follows 

pv v v  + v p  + VrD= pf, (1) 

v.v=o, (2) 
where p is the density, v is the velocity and p is the pressure. Appropriate boundary conditions and 
a definition of the deviatoric of the stress tensor rD in terms of the velocity field are required to 
solve this system. For a Newtonian fluid rD is given by 

P= -2pf, 
where 

(3) 

9 =$(Vv + VVT). (4) 

The solution of (l), (3), (4) under the constraint (2) can be carried out using an exact penalty 
rnethodl6 which strictly enforces the incompressibility constraint. Let us detail it for the steady 
state Stokes problem with Dirichlet boundary conditions, obtained by neglecting the inertial term 
in (1). A saddle point problem is defined by the augmented Lagrangian functional 

V and Q are the spaces of velocity and pressure test functions respectively and I is a penalty 
parameter. Taking the fitst variation of (5) with respect to both velocity and pressure leads to the 
system 

2- f(V):i)(&)dQ- pV*6vdQ+r IV*vV.SvJdSl= f.bvdn, V~VEV, (6) 
P n  sn sn sn 7 In 6 p  V - v dR =0, V6p E Q .  (7) 

Defining the discrete velocity vector U, the discrete pressure P and the matrices A and B, (6), (7) is 
equivalent to the algebraic system 

(A + rBTB)U + BTP = F, (8) 

BU=O. (9) 
Using the Galerkin procedure, the velocity trial functions (Pi are chosen equal to 6v and the terms 
of the matrix A are 

The pressure trial functions J l r  are chosen equal to 6 p  and the terms of the matrix B are 

B,= - Jb. #jV4TdQe. 

This is solved in an iterative fashion, first solving for the velocity 
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(A + ~ B ~ B ) u "  + = F - B=P", 

then the pressure 

I"'+' =I"'+rBU"+l. 

It can be easily checked that once the algorithm has converged, U and P are solutions of the Stokes 
problem and their value is independent of r. Convergence occurs in one iteration if r is large 
enough. It will be seen later that in order to preserve the compatibility between the interpolation 
spaces V and Q, a discontinuous pressure is used. In such a case, (13) can be solved at the 
elementary level and the pressure is absent from the overall algebraic system, greatly reducing its 
size. For large 3D problems this is best solved using an iterative method such as the one proposed 
in Reference 25. Finally, when the inertial term in (1) is not negligible, it is added to (12). For the 
low-Reynolds-number flows presented here it is added to the right-hand side as a forcing term and 
a fixed point method is used. For large Reynolds number it should be added to the left-hand side, 
thus creating a non-linear problem to be solved with an appropriate iterative method. 

3.2. Non-Newtonian jluid 

The viscous behaviour of polymeric fluids is characterized by large variations of the viscosity 
with the rate of strain. In the application presented here the viscosity of the polymer is modelled by 
a power law and the Newtonian viscosity p defined in (3) is replaced by a non-linear function of the 
second invariant of the rate-of-strain tensor: 

This non-linearity is again dealt with using an augmented Lagrangian," leading to a linear global 
system for v and a pointwise system for T ~ .  

3.3. Discretization 

The discretization of the mixed problem requires care, since the incompressibility condition 
should be satisfied at the elementary level. In 3D, several hexahedral brick elements have been tested 
successfully on benchmark Navier-Stokes problems,26 but the literature on tetrahedral elements 
is confined to the non-trivial derivation of the trial function basis.27* 28 The tests we have 
conducted so far show that the P1-PO, the simplest conforming tetrahedral Lagrange element 
with linear velocity at the vertices and discontinuous pressure at the centroid, exhibits pressure 
locking. In order to suppress this behaviour, additional degrees of freedom at the face centroids 
are required, resulting in 24 velocity degrees of freedom. If the pressure is kept PO, the enriched 
element is called P1 +-PO (Figure 7). If the pressure is linear defined at the centroid, the element is 
called P1+ +-PLZ9 

These non-conforming elements are theoretically shown2' to provide the same asymptotic 
accuracy as conforming elements with fewer degrees of freedom. The extra degrees of freedom are 
nonetheless a burden on the computational cost, as can be shown using Euler's formulae. With the 
notation defined above, the velocity degrees of freedom for a given problem meshed with PI-PO 
elements is 3u, while the maximum number of boundary conditions is 3ub. The same values for a 
P1 +-PO mesh can be determined to be respectively 3(2t + u + u,, - 2) and 3(3Vb-4),  a tremendous 
increase over the P1-PO. The expense of going to non-conforming quadratic elements is even 
larger, and their use in confined geometries can only be practical if they are also of quadratic 
geometry, thus enabling the approximation of complex geometries with very few elements. The 
present work is restricted to the P1+ -PO element. 
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0 velocity PI + 24 dof 
0 pressurePo 1 dof 

Figure 7. Degrees of freedom (dof) of a P1 +-PO tetrahedron 

3.4. Error estimate 

The Stokes problem was shown to be equivalent to a saddle point problem in Section 3.1. This 
equivalence is strictly valid only on the continuum R. The same treatment applied to the discrete 
problem generates extra boundary integrals inside the domain, called inter-element jumps. Since 
they were neglected, they appear in a residual-type a posteriori error bound E of the error expressed 
in the following norm, where the subscript h represents the variables in discrete space:'O, l 2  

I IP-PI11 l o +  I V - - V h l l  < 6. (1 5 )  

This error bound E is the RMS of the contributions qK over the elements K of the discretization: 

These can be computed from the solution field and can be written for 3 D  problems, dropping the 
subscript h for the sake of clarity, as 

q; = c 11311 f + qVZv-Vp((2 + 1 [h2 ( ( p  - Tnn) - ( p  - T"")* I 2 1  . (17) ( aK ) 
The second term is the sum of inter-element normal stress jumps, the starred value being 
computed in the neighbouring element of K. The same error bound is also valid for non- 
Newtonian fluids with some conditions on the integrability of f." The properties of E are 
illustrated for 2D examples in Reference 10. Furthermore, properties of the local components q K  of 
the error bound E are given in Reference 12. When computed for 3 D  linear elements with constant 
pressure and no body force, the only non-zero terms are the inter-element jumps, and qK is 
straightforward to evaluate during post-processing. 

The variation of E with increasing PI+-PO mesh size for the flow of a Newtonian fluid at 
Re = in a 3D tube is plotted in Figure 8. The velocity profile is known to be parabolic and the 
pressure drop linear in such a case, and the true error norm can be computed. It is plotted along 
with E and can be seen to increase linearly with h for small mesh sizes. The departure from linearity 
for the coarse mesh can be attributed to the geometrical approximation: the cylindrical geometry 
is not well represented by a polyhedron with few sides. The convergence rate of E itself is not quite 
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Figure 8. True error norm and estimate e for the Pl+-PO solution of the flow of a Newtonian fluid in a cylinder 

unity, and this may be due to element shapes, as explained earlier. Extra steps are taken when 
using E in the adaptive cycle to minimize the effects of these variations. 

This type of error estimate can be generalized to the Navier-Stokes equations.” For the very- 
low-Reynolds-number flows encountered in polymeric forming processes, the magnitude of the 
non-linear convective term is small and the above results can be used for practical purposes 
without any modification. 

4. ADAPTIVE CYCLE 

4.1. Transition operator 

The adaptive solution process is designed to provide a solution of chosen accuracy at minimum 
computer cost and with minimum engineer’s involvement. While the standard practice in use in 
finite element analysis today can be seen as an open loop, the adaptive process is a closed-loop 
cycle (Figure 9). Following the generation of the mesh KO and the finite element solution of the 
discretized problem, the error is estimated by qK. The transition operator uses the error estimate 
field qK and the error level e prescribed by the engineer to generate a field of desirable mesh size: 

hl = (k)ho- 

This transition operator is valid for perfectly regular meshes, but for real meshes one should 
introduce the regularity of individual elements to prevent spurious refinement where the locally 
high values of q K  are due to element distortion rather than size. The transition operator becomes 

The discontinuous mesh size field defined element by element is then averaged onto the nodes of 
KO and becomes a continuous nodal field h, (x, y, 2). It has been our observation that the mesh size 
field thus generated exhibits strong gradients. Gradients of magnitude higher than 0.5 often lead to 
the failure of the mesh generator. Smoothing is therefore performed on hl (x, y, 2)  by averaging the 
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Figure 9. Adaptive cycle: an ellipse represents a process, a rectangle data and a rounded rectangle interaction with the user 
and databases 

nodal values on each element and assigning this average to its centroid. This new discontinuous 
mesh size field is then averaged onto the nodes as above. This procedure iteratively leads to the 
elimination of large gradients. The standard deviation of the function h, (x , y , z )  is observed to 
decrease linearly with each iteration, which indicates that too many iterations will remove the 
spatial variability of h,  that allows adaptive meshing. Two iterations were found to be sufficient. 
The smoothed mesh field h, defined at the vertices of KO is the background from which the new 
mesh K, is created. To determine the desired mesh size of a new element from h,, interpolation is 
performed on KO by locating the centroid of the base of each new element before its apex is built. 
Once the new mesh is completed, interpolation is also used to generate an initial solution on it for 
time-dependent problems or iterative finite element solvers. The cycle is then complete. 

4.2. Interpolator 

The implementation of the interpolator requires special care. The segment tree,30 a nested 
binary structure in which the mesh if stored, is the core of the interpolator. It allows the location of 
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Figure 10. CPU time to locate a point in a 3D mesh using the segment tree, measured on an Apollo DN4000. The points 
stored in the segment tree are the vertices of the mesh 
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Figure 11. CPU time to build a segment tree for a 3D mesh, measured on an Apollo DN4000. The points stored in the 
segment tree are the vertices of the mesh 

a point given by its co-ordinates optimally.20 Average times for location of points in the 
tetrahedral 3D discretization of a unit cube are plotted in Figure 10. The increase of location time 
with mesh size is polylogarithmic, to be compared with a linear increase if a linear list of elements 
was used. 

A new segment tree needs to be created for each mesh, and it is important that the time taken to 
create a segment tree be itself checked. It is plotted in Figure 11 and can be observed to be 
superlinear. Moreover, it is small compared to the solution time of the finite element problem. It 
should be noted that the implementation of the segment tree makes use of dynamic allocation and 
cannot be easily vectorized. 

The closed-loop process continues until the error level set by the engineer is reached. This may 
be done theoretically in a single cycle, since the error on mesh K, should be equipartitioned and 
have the value e everywhere. It is not so in practice, and the cycle can be used iteratively. To this 
end, intermediate meshes can be created automatically using intermediate error levels in the 
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transition operator. The iterative nature of the process calls for interaction at every cycle with both 
the object representation and the boundary conditions on that representation. Using the previous 
mesh as a definition of the object is not appropriate, since geometrical features not present in a 
coarse mesh may appear in a finer mesh. The object and boundary conditions are stored in a 
database totally independent of the segment tree, which only contains the mesh. Furthermore, 
neither this database nor the segment tree is needed during the finite element solution, and a linear 
list of all elements can be used then, reducing the space requirement to a minimum. However, this 
forces computation and assembly of the matrix for each cycle. 

5. APPLICATION TO POLYMER MELT FLOW 

5.1. Extrusion rheometer 

To test the validity of the finite element solution with the above discretization, the pressure drop 
for the flow of a polyethylene in an extrusion rheometer is first studied. Isothermal experimental 
results for this problem are reported by Lenk3' for an axisymmetric cone of 5.4" angle and 40 mm 
length. The computational domain used for the numerical test is a cone of length 20mm 
(Figure 12). No use is made of symmetry to reduce the size of the computational domain. Entrance 
and exit cylindrical sections are added to provide developed flow at the outlet and to allow proper 
Dirichlet boundary conditions at the inlet. The rheology of the fluid at 190 "C is modelled3I using 
a power law, with a consistency index m = 2.19 SI and a power-law index n =04. The developed 
power-law velocity profile is imposed at the inlet, with an average velocity of 0.66 mms-', 
corresponding to a piston speed of 4 cm min- '. 

The total pressure drops computed with a 725Pl+-PO mesh and a 2082Pl+-PO mesh 
(Figure 13) are listed in Table I. The contributions of the 20 mm long exit duct and the conical 
section are isolated. The flow domain being axisymmetric, a 2D finite element code was used to 
conduct a mesh refinement analysis. The 2D value tabulated does not vary with further mesh 
refinement and can be considered to be a reference. It can be seen that the solution in 3D tends 
towards that reference value, but that a large number of degrees of freedom are needed to achieve 

" t  
vx = vy  = vz = 0 

4 1 Om m cf-- 20 m m -M- 20m m .-w 

Y 

Figure 12. Cross-section of geometry and boundary conditions of extrusion rheometer 
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Table I. Pressure drop for a power-law fluid in the cone of an extrusion rheometer 

Pressure drop 3D 3D 2D Lubrication Lenk3’ 
&Pa) 725 elements 2082 elements analytical experimental 

- AP total 77.0 71.9 66.0 665 
A P  cone 20 mm 26.3 25.9 22.8 22.8 - 
AP tube 20 mm 45.9 40.5 36-9 36.7 - 
AP cone 40 mm - - 129.0 170.1 - 

Figure 13. Mesh of extrusion rheometer 

proper accuracy. This is due in part to the geometrical approximation involved in replacing 
curved surfaces with polyhedra. The study of the complete domain allows us to conclude that 
there is no major effect due to the non-symmetry of the 3D mesh on the solution. 

The axisymmetry and small conical angle of the case also allow analytical pressure drop 
computations to be performed using the lubrication appro~imation.~’ The close agreement in 
Table I between the lubrication approximation, the 2D solution and fine mesh result in 3D is a 
validation of the code for the rheological model chosen. On the other hand, a 32% discrepancy 
between the experimental and the lubrication results can be observed for the 40 mm cone, as 
reported in Reference 31. This might be attributed to two causes, experimental error and the 
choice of rheological model, since the viscosity of real fluids, unlike the prediction of the power 
law, reaches a limit value for zero shear. 
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5.2. Abrupt contraction 

The adaptive process can best be studied in a flow domain with a geometrical singularity. An 
abrupt contraction was chosen (Figure 14) with Neuman boundary conditions at the inlet. The 
rheology of the fluid is as above. The initial user-defined mesh of 766 elements is coarse and 
uniform. The corresponding pressure along its axis of symmetry is plotted in Figure 15. The total 
error E estimated on that mesh is 4.85% of the total solution norm. This does not take into account 
geometrical approximations. The error field q K  on that mesh is represented in Plate 1. The areas of 
high error are the contraction plane itself as well as the exit duct, where the number of free nodes 
per section is only about seven, a small value to approximate a non-Newtonian velocity profile. An 
error level of 1.6% is then chosen by the user and the mesh size field required to obtain that error 
level is computed and smoothed. An upper bound of 1-2 and a lower bound of 0.3 are set for the 

vx = v y  = vz = 0 

4-- 4 0 m m --M- 4 Om m 

Y xLz 
Figure 14. Cross-section of geometry and boundary conditions of 2:l abrupt contraction 
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Figure 15. Pressure along the axis of symmetry of 2:l contraction 
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Figure 16. Adaptive mesh of 2: 1 contraction 

ratio h,/h,. This prevents undue refinement that would increase the number of elements beyond 
manageable values, as well as excessive coarsening that would lead to a worsening of the 
geometrical approximation. The resulting mesh of 2476 elements is shown in Figure 16 and the 
corresponding error field in Plate 2. The total error is 2% and the spread of the error is now less 
than in the original mesh. This equipartitioning of the error field is characteristic of adaptive 
meshes. The pressure profiles corresponding to this adaptive mesh, a finer uniform 3D mesh and a 
2D reference solution obtained by a mesh refinement analysis are plotted in Figure 15. The 
agreement between the three solutions is good and only the initial 3D mesh leads to a visible 
departure from the reference. 

The computational speed of the finite element solver itself can be illustrated by the results for the 
adaptive mesh of the abrupt contraction. For 2476 elements the number of equations to solve is 
17 568 for the velocity alone, coupled with 2476 pressure unknowns. This was solved in 54 min on 
a Convex C220. 

Finally, a view of the inside of the contraction (Plate 3) allows us to check the distribution of the 
aspect ratios of the elements for this graded mesh. Most, i.e. 93%, are less than 2.0, 1.0 being the 
value for an equiangular tetrahedron. This can be further checked by the distribution on two 
additional cross-sections (Plate 4). Such a high uniformity can only be achieved in conlined 
geometries by smoothing the mesh size field before interpolation. It was checked that any increase 
in the number of distorted elements affects the results of the computation. 

6. CONCLUSIONS 

The present paper has shown that global remeshing can be used as the core of an adaptive strategy 
for the solution of viscous flows in 3D. The fast generation of valid triangulations has been 
achieved by the use of tree-like structures and both topological and geometrical representations of 
the domain and its boundaries. The mesh generator allows meshing of confined flow domains 
without partitioning. The quality of the mesh is monitored with an aspect ratio that indicates 
regularity of the mesh in a well-defined sense other than a purely geometrical sense. The mesh size 
is locally determined by a nodal field derived from an error estimate. Extensions of the method 
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could provide for definition of the mesh size field using any scalar quantity, allowing for adaptivity 
with respect to other criteria. 

The non-inertial character of the flow leads to a dependence of the error on both the velocity 
and pressure, and this was successfully dealt with by using an a posteriori error estimate well suited 
for the mixed problem. Not only does the error estimate drive the adaptive cycle, it can also 
increase the confidence placed in numerical analysis results. The adaptive strategy presented here 
is therefore a step towards a better use of the engineer’s time. 

APPENDIX 

The upper bound on the error for the finite element of the Stokes problem increases with the 
condition number of the elementary Jacobian matrices. For linear tetrahedra this in turn is bound 
by 0, called the regularity of the element: 

where h is the maximum of all edge lengths over the element and p is the diameter of its inscribed 
sphere. This purely geometrical criterion can be computed by recalling that the centre of the 
inscribed sphere is by definition the intersection of normals to the four faces. It is equidistant from 
all four faces and its co-ordinate vector x is the solution of the system 

lJ = h / P ,  (20) 

ni.(x-gi)=r, Vi~[1,4], (21) 

where gi is a point on face i and n, is the unit normal to face i. The distance r is of course the radius 
of the inscribed sphere, equal to p / 2 .  The point gi can be chosen as the centroid of face i and the 

Iix + m,y + niz - r  = Iiui +miui +ni wi, V ~ E  [l, 41. (23) 

+ alpha - sigma 

0 1 2 3 4 5  6 
hlhO 

Figure 17. Regularity u* and aspect ratio a of a tetrahedron with an equiangular base as its height varies. The height of the 
tetrahedron is normalized by h,, the height of an equiangular tetrahedron, ahd u* is normalized by its value for the same 

tetrahedron 
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Figure 18. Isolines of a* in a plane at a distance h, from the base of the tetrahedron 

Figure 19. Isolines of a/u* in a plane at a distance h, from the base of the tetrahedron 

Performing Gaussian elimination on the system of unknowns x, y, z and r leads directly to the 
value of the fourth unknown r and to (T. 

Two sensitivity analyses were carried out to study the variations of (T with the deformation of a 
tetrahedron away from the equiangular shape. Let us introduce the values h, and o0, the height of 
an equiangular tetrahedron and its regularity respectively. This leads to the definition 

(T*=(T/(To, 
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which is equal to unity for an equiangular tetrahedron. In Figure 17, u* is plotted for variations of 
the height h of an element with a fixed equiangular base. It can be seen that the error increases for 
the smallest distortion of the element. In Figure 18 the apex of the tetrahedron moves in a plane at 
a distance h, from its fixed equiangular base and the isolines of u* in that plane are plotted. The 
projection of the base of the tetrahedron is also drawn. 

The computation of the regularity CT* requires the computation of the unit normals and is too 
costly to be used in the mesh generator. An estimate a of u* can be computed 

a=---- 
12 v ’  

where his the average edge length over the element and Vis the element volume. Since the volume 
is known from the computation of the determinant of the Jacobian, the aspect ratio a is cheaper to 
compute than u. The behaviour of a is seen to compare well with that of u* when the height of the 
element varies (Figure 17). In Figure 19 the isolines of a/u* in the h,-plane show that the ratio 
remains reasonably close to unity when the apex moves in that plane. On this basis of these 
comparisons, the aspect ratio a is used in lieu of the regularity u throughout the programme. 
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